SOLVING LINEAR SYSTEMS IN 3-D

MATH1314/GWJ/08

The problem: solve	$a_2x + b_2$	$y + c_1 z = d_1$ $y + c_2 z = d_2$ $y + c_3 z = d_1$		
Interpreting the equations:		ear equation ee intercepts		
Solution cases:	-			gle common point e that satisfies all 3 equation)
	-		-	l line in 3-space y-many solutions)
	-	anes are para stent system		never intersect at all ution)
Algebraic methods: (a.k.a. <u>additic</u> Double <u>elimination</u> -		same variabl	le, result	, use elimination to eliminate ing in two equations in 2 ormally from there with any
example:		x + y + z 2x - y + z x + 2y - 3z	= 3	eq 2
			•	etween eq 1 and 2, and an c of 2 in y, eq 2 and eq 3.
		$\begin{array}{r} x + y + z \\ \underline{2x - y + z} \\ 3x \\ \end{array}$		eq 1 eq 2 eq 4
	2	2(2x - y + x + 2y - y))
		4x - 2y + 2z x + 2y - 3z 5x - z		2 x eq 2 eq 3 or $z = 5x - 2$ eq 5

Substituting eq5 into eq 4:

	3x + 2(5x - 2) = 9		
	3x + 10x - 4 = 9		
	13x = 13		
	$\mathbf{x} = 1$		
	use eq 5 in x and z with the value of x to get:		
	z = 5(1) - 2 = 5 - 2 = 3		
	arbitrarily pick eq 1 and use values of x & z to find the value of y:		
	1 + y + 3 = 6		
	y + 4 = 6		
	y = 2		
	solution triple: $(1, 2, 3) = (x, y, z)$		
	(be sure and check these values in all 3 original equations!)		
Double Substitution -	Taken by pairs twice, use substitution to eliminate the same variable, resulting in two equations in 2 variables. Proceed normally from there with any convenient method.		
same example:	$ \begin{array}{ll} x + y + z = 6 & eq \ 1 \\ 2x - y + z = 3 & eq \ 2 \\ x + 2y - 3z = -4 & eq \ 3 \end{array} $		
	y is particularly easy to isolate in eq 1 and eq2:		
	y = -x - z + 6eq 4, was eq 1 $y = 2x + z - 3$ eq 5, was eq 2 $x + 2y - 3z = -4$ eq 3		
	substitute eq 4 into eq 3, and eq 5 into eq 3:		
	$\begin{array}{l} x+2(-x-z+6)-3z=-4 \\ x+2(2x+z-3)-3z=-4 \end{array} eq \ 6 \ (3 \ with \ 4) \\ eq \ 7 \ (3 \ with \ 5) \end{array}$		

	x -2x -2z +12 -3z = -4 x + 4x + 2z - 6 -3z = -4	simplifying eq 6 simplifying eq 7
	-x - 5z = -16 5x - z = 2	simplified eq 6 simplified eq 7
Solve eq 7 for z:	z = 5x - 2	and sub that into 6
	-x - 5(5x - 2) = -16	
	-x - 25x + 10 = -16	
	-26x = -26	
	x = 1	(as before)
use $z = 5x - 2$:	z = 5(1) - 2 = 5 - 2 = 3	(as before)
arbitrarily pick eq 4:	y = -(1) - (3) + 6 = -4 + 6 = 2	2 (as before)
	solution triple $(1, 2, 3)$	(as before)

Matrix methods:

Row operations –

same example:	x + y + z = 6 2x - y + z = 3 x + 2y - 3z = -4	2 -1 1 3
sub top from bott to g	get: 1 1 1 6 2 -1 1 3 0 1 -4 -10	
sub 2x top from 2 nd to	oget: 1 1 1 6 0 -3 -1 -9 0 1 -4 -10	
$-1/3 \ge 2^{nd}$ row to get:	1 1 1 1 6 0 1 1/3 3 0 1 -4 -10	

sub 2 nd from 3 rd to get:	1 1 1 6 0 1 1/3 3 0 0 -13/3 -13
$-3/13 \times 3^{rd}$ to get:	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
sub 2 nd from 1 st to get:	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
sub $2/3 \times 3^{rd}$ from 1^{st} to get:	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
sub $1/3 \ge 3^{rd}$ from 2^{nd} to get:	1 0 0 1 0 1 0 2 0 0 1 3

and read off (x, y, z) = (1, 2, 3)

(same solution as before)

Taking a 3x3 determinant: (using the co-factors method)

for same example:	$\begin{array}{r} x + y + z = 6\\ 2x - y + z = 3 \end{array}$	
	x + 2y - 3z = -4	
determinant D of the (expand along top ro	e matrix of coefficients	$is D = det \begin{vmatrix} 1 & - & + \\ 1 & 1 & 1 & \\ 2 & -1 & 1 & \\ 1 & 2 & -3 & \end{vmatrix}$
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$= 1^*((-1)(-3) - (2)(2))$	1)) -1*((2)(-3) - (1)(1)) + $1^{*}((2)(2) - (1)(-1))$
= 1*(3-2) - 1*(-6)	(-1) + 1*(4+1) = 1*	$1 - 1^*(-7) + 1^*5 = 1 + 7 + 5$
= 13 = D = determinent	nant of the matrix of co	pefficients (by co-factors)

Cramer's Rule: (extend to 3-D, sub const column for x-column for Dx, etc)

Let Dx be determinant of coefficient matrix with the constant column substituted for the x-column

Let Dy be determinant of coefficient matrix with the constant column substituted for the y-column

Let Dz be determinant of coefficient matrix with the constant column substituted for the z-column

Let D be the determinant of the matrix of coefficients without any column substitutions

Then x = Dx/D, y = Dy/D, and z = Dz/D

		ху Z	const
for same example:	x + y + z = 6	1 1 1	6
	2x - y + z = 3	2 -1 1	3
	x + 2y - 3z = -4	1 2 -3	-4

we already know D = 13 per example of 3-D determinants above

$Dx = det \mid 6 \ 1 \ 1 \mid = 13$ $\mid 3 \ -1 \ 1 \mid = 13$ $\mid -4 \ 2 \ -3 \mid$	(details of cofactors not shown)
Dy = det 1 6 1 = 26 2 3 1 1 -4 -3	(details of cofactors not shown)
Dz = det 1 1 6 = 39 2 -1 3 1 2 -4	(details of cofactors not shown)
so $x = Dx/D = 13/13 = 1$ y = Dy/D = 26/13 = 2 z = Dz/D = 39/13 = 3	(as before) (as before) (as before)

Matrix Inversion

Use suitable calculator or computer software; take inverse of matrix of coefficients, pre-multiply it onto constants vector. Resulting vector is the solution.

		Coeff matrix	consts
for same example:	x + y + z = 6	1 1 1 x	6
	2x - y + z = 3	2 -1 1 * y	= 3
	x + 2y - 3z = -4	1 2 -3 z	-4

	inverse consts	
has the solution	$ \mathbf{x} $ 1 1 1 ⁻¹ 6	
	y = 2 -1 * 3	
	z 1 2 -3 -4	
calculator inverse is	: .0769 .3846 .1538	
(decimal approx. or	ly) .53843076 .0769	
	.384607692307	
and the matrix mult	iplication yields this solution vector	1
		2
		3

(same as before)

Definition: Identity Matrix I has 1's on main diagonal, 0's elsewhere

3x3 example: | 1 0 0 | | 0 1 0 | | 0 0 1 |

Inversion by Row Operations (best done in a spreadsheet)

for same example:

x + y + z = 6 2x - y + z = 3x + 2y - 3z = -4

set up augmented matrix of coefficients on the left and identity on the right

| 1 1 1 | 1 0 0 | | 2 -1 1 | 0 1 0 | | 1 2 -3 | 0 0 1 |

Do row ops (not shown) until identity is on the left, inverse will be on right

| 1 0 0 | .0769 .3846 .1538 | | 0 1 0 | .5384 -.3076 .0769 | | 0 0 1 | .3846 -.0769 -.2307 |

Use the inverse in matrix multiplication as just above to determine solution

[inverse] * | 6 | | 1 | | x || 3 | = | 2 | = | y || -4 | | 3 | | z |

Remember – always check your solutions in all 3 original equations!!!!