POLYNOMIALS "CHEAT SHEET"

all math/8-19-07

Degree (highest power of the variable) (highest sum-of-exponents for multi-variable)

power	<u>degree</u>	name
0	0^{th}	constant
1	1^{st}	linear
2	2^{nd}	quadratic
3	3 rd	cubic
4	4^{th}	quartic (some books, but not all)
5 (& up)	5 th (& up)	none

Number of terms (monomials connected by + or – signs)

term count	terminology	name
1	1-term	monomial (product of a coefficient and variables)
2	2-term	binomial
3	3-term	trinomial
4 (& up)	4-term (& up)) none

Like terms – have same variable(s) to the same exponent(s), coefficients may differ

Adding (subtracting) – combine like terms by adding (subtracting) coefficients (3+4x) - (2+3x) = 3 + 4x - 2 - 3x = (3-2) + (4-3)x = 1 + x

Multiplying polynomials:

F L F L F O I L2 binomials: FOIL F L F L F O I L $(a+bx)(c+dx) = ac + adx + bcx + bdx^{2} = ac + (ad+bc)x + bdx^{2}$ G I I OAny polynomials: rainbow (cards) (a + bx)(c + dx) (deal all, to every player)

Distribution (or factoring), of a common factor

Patterns for multiplying and factoring:

(a and b may be any monomials)

$(binomial)^2 = perfect square trinomial$	$(a + b)^{2} = a^{2} + 2ab + b^{2}$ $(a - b)^{2} = a^{2} - 2ab + b^{2}$
(bino. sum)(bino. diff.) = diff of 2 squares	$(a + b)(a - b) = a^2 - b^2$
sum of two cubes	$a^{3} + b^{3} = (a + b)(a^{2} - ab + b^{2})$
difference of two cubes	$a^{3} - b^{3} = (a - b)(a^{2} + ab + b^{2})$

Procedure for factoring 1x^2 + bx + c

("3rd term" procedure)

(1) list all the possible factors of the 3rd term c, positive and negative (2) select that pair of factors that also add to form middle term coefficient b (3) the selected factors become the constants added to x in the two binomials example: $x^2 - 7x + 10$ factors sum 1 10 11 -1 -10 -11 2 5 7 -2 -5 -7 <<<< sums to -7, select so $x^2 - 7x + 10 = (x-2)(x-5)$

(always check by multiplying your answer to see if you get the original problem)

"Organized trial-and-error" procedure for factoring $ax^2 + bx + c$

(1) list all the possible pairs of factors of a, to be the coefficients of x (2) list all the possible pairs of factors of c, to be the constants added to x terms (3) multiply out all combinations of (1) and (2) until obtaining the right "bx" example: $2x^2 + x - 3$ factors of 2 (on x^2) factors of -3

1 and 2	-1 and 3
-1 and -2	1 and -3

combinations	result
(x-1)(2x+3)	$2x^2 + x - 3 \ll that's it$
(-x -1)(-2x +3)	$2x^2 - x - 3$
(x+1)(2x-3)	$2x^2 - x - 3$
(-x+1)(-2x-3)	$2x^2 + x - 3 <<<<$ same as 1^{st} one
(x+3)(2x-1)	$2x^2 + 5x - 3$
(-x+3)(-2x-1)	$2x^2 - 5x - 3$
(x-3)(2x+1)	$2x^2 - 5x - 3$
(-x-3)(-2x+1)	$2x^2 + 5x - 3$

(always check by multiplying your answer to see if you get the original problem)

Factoring by grouping:

- (1) Group like terms having a common factor and factor it out
- (2) Look for a common factor between your factored groups

Example: factor $5x + 5y + x^2 + xy$ Group the y's together, and the remaining x's together: $5y + xy + 5x + x^2$ y(5 + x) + x(5 + x) note (5 + x) in common (y + x)(5 + x)

(always check by multiplying your answer to see if you get the original problem)

Factoring $ax^2 + bx + c$ by "the Box"

Illustrate by example:	factor $8x^2 - 2x$	x — 15
Set up the box:	8x ²	-2x
Multiply down diagon	-15 al	$-120x^{2}$

List all the factors of $-120x^2$ and find the ones that add to -2x; the list shown is the complete one, but you can often see the pattern and shortcut it:

-1x	120x	119x	
1x	-120x	-119x	
2x	-60x	-58x	
-2x	60x	58x	
3x	-40x	-37x	
-3x	40x	37x	
4x	-30x	-26x	
-4x	30x	26x	
5x	-24x	-19x	
-5x	24x	19x	
6x	-20x	-14x	
-6x	20x	14x	
8x	-15x	-7x	
-8x	15x	7x	
10x	-12x	-2x	<<<< that's it!!!
-10x	12x	2x	

Put the two factors in the other two box spaces (doesn't matter which):

$$\frac{|8x^2| 10x|}{|-12x| -15|}$$

Pull out common factors leftward and upward, and use them as your binomials:

Check to make sure, sometimes a +/- sign will be off in one or the other

$$(2x-3)(4x+5) = 8x^2 - 12x + 10x - 15?$$

= $8x^2 - 2x - 15$ VERIFIED

Use this procedure whenever there are multiple sets of factors for the a and the c in the original quadratic. It will save considerable time and effort. Use direct trial and error whenever there is only one set of factors for the a and the c.